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LETTER TO THE EDITOR 

Optical properties of the Compton effect 

Claude Elbaz 
Institut d'optique, Centre Universitaire d'Orsay, BP 43, 91406 Orsay, France 

Received 24 November 1986 

Abstract. It is shown that the light reflection laws on a moving mirror are formally identical 
with the kinematical properties of the Compton effect. 

In recent work, we showed how the Compton effect was characterised as a purely 
kinematical phenomenon involving the relativistic addition of velocities of the incident 
and scattered photons only (Elbaz 1987). In a previous paper, Ashworth and Jennison 
explained the Compton scattering as a pure specular reflection in the proper frame of 
reference of the scattered element (Ashworth and Jennison 1974). 

In both cases, the relations involved contained only angles and velocities: angles 
of incidence and  reflection, and velocities of light and of the recoil electron. The shift 
in frequency of the scattered x-ray coincides with the Doppler shift and is a consequence 
of the relativistic mechanical properties of a receding source (Ashworth and Jennison 
1974). These features suggest that the Compton effect is strongly linked with the 
relativistic optical properties of matter and  light. 

In this letter, we propose to show that the laws of reflection of light on a moving 
mirror are formally identical with the kinematical properties of the Compton effect. 

Such a result is not too surprising: since Hamilton, it is well known that a close 
correspondence exists between optical and  mechanical equations. 

In geometrical optics (Born and Wolf 1970, Marechal 1955), the light reflection 
law on a fixed mirror can be obtained by the expression of phase conservation 

w t - k ; r = w t - k , . r  ( 1 )  

with 

( 2 )  

If ui and U, are the unit vectors of the incident and reflected rays (Born and Wolf 
1970) we can write, from (1) and ( 2 ) ,  

(3)  

We set x and y coordinates in the plane of incidence so that Ox coincides with the 
normal of the mirror (figure 1 ) .  Relation (3) becomes 

(4) 

w 2  = k z c 2  = k f C 2 .  

c f  - r .  U ,  = et - r e  U,. 

c t - x  cos Bi - y  sin 8, = ct + x  cos Or-y sin er. 
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Figure 1. Reflection of light on a moving mirror. 

By identification of the different terms we obtain 

COS ei = -COS e, 
sin Oi = sin 8,. 

( 5 )  

(6) 

These equations are satisfied when 

er = 7T - ei. ( 7 )  

This relation constitutes the well known law of reflection (Born and Wolf 1970). 
When the mirror is moving uniformly with a velocity v = pc along the direction Ox 

of its normal, the proper coordinates (x', t ' )  are obtained from the laboratory coordin- 
ates ( x ,  t )  by the Lorentz transformation 

x ' +  ut' 

(1 - p y  (1 - p y 2  
X - - t  i x =  

The phase, which is a scalar, is a relativistic invariant (Landau and Lifshitz 1962, Furth 
1970). From (1) we obtain 

(9) 

(10) 

wit  - ki - r = U $ -  k ,  - r'. 

wi t  - k ix  COS ei - kiy sin ei = U,?'+ k,x' cos 8, - k,y' sin e,. 
In  x, t and x ' ,  t' coordinates we obtain 

By combining (10) and (8) we obtain 

(1 - p  COS ei) oi 

-COS e i + p  
1 - p  COS ei COS er = 

(1 - p2)'/'sin ei 
sin 8, = I 1 - p  COS ei 

( 1  - p  COS e,) Wr 
wi = 

(11) 
-COS e,+p 
1 - p COS e, COS ei = 

(1  - p2)1/2sin e, 
sin Bi = 

I - ~ C O S  e, ' 

These relativistic equations generalise equations (2), ( 5 )  and (6), retrieved when p = 0, 
and constitute the light laws of reflection for a moving mirror. 
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They show that the incident and reflection angles play a symmetrical role: this is 
consistent with the classical light propagation laws, extended to the relativistic 
domain. This symmetry is more visible when we express the mirror velocity with 
respect to the angles Oi and 6,: 

If we call vi = c cos Bi and U, = c cos 0, the projections of the incident and reflected 
light velocities along the direction of the mirror motion, we obtain from (12) 

VI + U, 
v =  

1 + vi U,/ c2‘ 

The mirror velocity is obtained by adding the projections relativistically of the incident 
and reflected light velocities along the direction of the motion. 

The relations between the frequencies wi and w ,  of the incident and reflected light 
in (11) correspond to the Doppler effect (Landau and Lifshitz 1962). 

The shift in orientation AB, = Or - ( 19,)~ between the light rays reflected by the moving 
mirror and by the fixed one represents the ‘angular aberration’. From (7 )  we find 

he,= e,+ei-r. (14) 

From (1 1) we calculate 

p 2  sin2 ei 
2(1-P cos ei)* cos AB, = -cos( 6i-t e,) = 1 - 

When AB, is small, we can write 

COS AO,= 1 - f ( A e , ) ’ .  

We find then, in first approximation in p, 
AB, = p sin Bi. (16) 

Figure 1 shows that the reflected ray diverges from the normal when the mirror is 
moving away from the incident ray along its normal. 

This circumstance shows that the maximum angle of incidence O I L ,  or limit angle 
of incidence, is such that the corresponding reflected angle erL is tangent to the mirror 

e r L = $ 7 T ~ C O S  eiL=p. (17) 

From (11) we find that the frequencies wiL of the incident and wrL of the scattered 
light rays are related by 

W,L = WiL( 1 - p y 2 .  (18) 
We now consider the Compton effect. Starting from the Compton equations 

(Compton 1923) 

h v +  mOc2 = h u t +  mc2 

h v l c  = hu‘ /c+  mv 

with 
m2c2 = m i c 2 +  mZv’ 
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Figure 2. Collision between a photon and an electron. 

we call + the deviation angle of the scattered light with frequency U' and ic, the deviation 
angle of the recoil electron (figure 2). The solution of the system (19) (Ashworth and 
Jennison 1974, Elbaz 1987) leads to the kinematical properties of the Compton effect: 

When we compare figures 1 and 2, we notice that 8, = 4 + CC, and Bi = 4. We can then 
identify (21) and (11). 

In the Compton effect, the kinematical properties of the collision between a photon 
and an electron at rest are formally identical with the laws of reflection of light on a 
mirror moving in the direction of its normal. As a consequence, the other properties 
of the light reflection on a moving mirror apply also to the Compton effect: symmetry 
between the incident and the scattered rays (Ashworth and Jennison 1974) and 
relativistic addition of velocities (Elbaz 1987). 

The critical angle (LL between the incident ray and the recoil electron, such that 
cos (CIL= p, occurs when the scattered photon is normal to the electron Y -  U'= 0 or 
+ + $ = $ 7 ~ .  From (19) we then find 

v' = U( 1 - p2)? 

hv = mc2 (23) 

hv' = m,c2. (24) 

(22) 
This relation corresponds to relation (18) for a mirror. By combining (22) with (19) 
we obtain 

and 

These results show that even if the Compton effect is interpreted in terms of particle 
collision, it is consistent with a light optical reflection description on a moving mirror. 
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